Biological dosimetry intercomparison exercise: An evaluation of triage and routine mode results by robust methods

M. Di Giorgio*, J. F. Barquinero, M. B. Vallerga, A. Radl, M. R. Taja, A. Seoane, J. De Luca, M. Stuck Oliveira, P. Valdivia, O. Garcã A. Lima, A. Lamadrid, J. González Mesa, I. Romero Aguilera, T. Mandina Cardoso, Y. C.Guerrero Carvajal, C. Arceo Maldonado, M. E. Espinoza, W. Martí-Nez-López, L. Méndez-Acuña, M. V. Di TomasoL. Roy, C. Lindholm, H. Romm, I. Güç, David Lloyd

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

Well-defined protocols and quality management standards are indispensable for biological dosimetry laboratories. Participation in periodic proficiency testing by interlaboratory comparisons is also required. This harmonization is essential if a cooperative network is used to respond to a mass casualty event. Here we present an international intercomparison based on dicentric chromosome analysis for dose assessment performed in the framework of the IAEA Regional Latin American RLA/9/054 Project. The exercise involved 14 laboratories, 8 from Latin America and 6 from Europe. The performance of each laboratory and the reproducibility of the exercise were evaluated using robust methods described in ISO standards. The study was based on the analysis of slides from samples irradiated with 0.75 (DI) and 2.5 Gy (DII). Laboratories were required to score the frequency of dicentrics and convert them to estimated doses, using their own doseâ€"effect curves, after the analysis of 50 or 100 cells (triage mode) and after conventional scoring of 500 cells or 100 dicentrics. In the conntional scoring, at both doses, all reported frequencies were considered as satisfactory, and two reported doses were considered as questionable. The analysis of the data dispersion among the dicentric frequencies and among doses indicated a better reproducibility for estimated doses (15.6% for DI and 8.8% for DII) than for frequencies (24.4% for DI and 11.4% for DII), expressed by the coefficient of variation. In the two triage modes, although robust analysis classified some reported frequencies or doses as unsatisfactory or questionable, all estimated doses were in agreement with the accepted error of ±±0.5 Gy. However, at the DI dose and for 50 scored cells, 5 out of the 14 reported confidence intervals that included zero dose and could be interpreted as false negatives. This improved with 100 cells, where only one confidence interval included zero dose. At the DII dose, all estimations fell within ±±0.5 Gy of the reference dose interval. The results obtained in this triage exercise indicated that it is better to report doses than frequencies. Overall, in both triage and conventional scoring modes, the laboratory performances were satisfactory for mutual cooperation purposes. These data reinforce the view that collaborative networking in the case of a mass casualty event can be successful.

Original languageEnglish
Pages (from-to)638-649
Number of pages12
JournalRadiation Research
Volume175
Issue number5
DOIs
Publication statusPublished - May 2011

Fingerprint

Dive into the research topics of 'Biological dosimetry intercomparison exercise: An evaluation of triage and routine mode results by robust methods'. Together they form a unique fingerprint.

Cite this